
C3M4

Parametric Surfaces

To parameterize a surface we must do two things. We must determine a portion of the plane to serve
as the domain of a continuous function. Then we must determine that function that maps this domain onto
the surface we are parameterizing in a nice way. Later we will learn why this is of value. You will find that
we will lean heavily on z = f(x, y), y = g(x, z), or x = h(y, z) in the rectangular case. But cylindrical or
spherical coordinates will be of equal value in accomplishing this task.

If D is a set in IR2 and g is defined as

g:D → IR3 g(u, v) =


x g1(u, v)

y g2(u, v)
z g3(u, v)




then our surface is defined as the image g(D) = S . This looks worse than it really is. For one thing, the
x, y, z outside of the parentheses do not normally go there. They were put there this time to emphasize
that the entry for that row determines the value of the x, y, z coordinate.

Suppose z = f(x, y) with domain D . Define g(u, v) =


 u

v
f(u, v)


 where it is obvious that u and v

play the role of x and y . Or, just use x and y as the independent variables. After a few examples this
will seem easier. Note how the parameterization ties in nicely with the plotting of the surface. While we
could easily use cylinderplot or sphereplot in certain problems, having the function g makes it much easier
to just use plot3d. One of the tricks to ease parameterization is to ask yourself this question: “Is the surface
constant for any of the variables in any of the three coordinate systems that we use?” If so, using the other
two variables is probably the easiest way to proceed.

In each example that follows we will define the function in Maple and then use plot3d to display it. The
first step makes us get used to the idea that we are defining a function and the second forces us to define the
domain of the function. When we set up the plot3d restrictions on the variables we are defining the domain.
These skills will be essential later in the course.

Example 1 Parameterize the portion of the surface z = x2 + y2

that lies above the triangle with vertices P (0, 0), Q(2, 0), R(2, 2).
Because z = f(x, y), we just use the obvious approach as described
above.

g(x, y) =


 x

y
x2 + y2


 0 ≤ y ≤ x

0 ≤ x ≤ 2

Define the function in Maple:
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> g:=(x,y)->[x,y,xˆ2+yˆ2];
g := (x, y) → [x, y, x2 + y2]

To plot this surface use:

> plot3d(g(x,y),x=0..2,y=0..x,color=red);
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Example 2 Parameterize that portion of the plane
x + 3y + 4z = 12 that lies in the first octant with x as the
dependent variable.

g(y, z) =


 12 − 3y − 4z

y
z


 0 ≤ y ≤ 4 − 4z

3
0 ≤ z ≤ 3

Define the function in Maple:
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> g:=(y,z)->[12-3*y-4*z,y,z];
g := (y, z) → [12 − 3y − 4z, y, z]

And to plot this surface:
> plot3d(g(y,z),y=0..4-4*z/3,z=0..3,color=blue);

You may be puzzled by this plot. Pay attention to the axes. Because the bounds on y were listed first,
Maple thinks that y belongs where we put the x-axis. It is very important that you realize that the domain
of this function g is the triangle in the yz -plane bounded by the y and z axes and the plane x+3y+4z = 12.

Before we do this next example we remind you of the cylindrical coordinate system.


x r cos θ

y r sin θ
z z




Example 3 The solid in the first octant lies between x2 +y2 = 1
and x2 + y2 = 4, above z = 0 and below the paraboloid z =
9−x2 −y2 . We are going to parameterize the surfaces that we can
see and show how to plot them in Maple. This is easiest when done
from the viewpoint of cylindrical coordinates. We will begin with
the surface on the left, where y = 0 or θ = 0. Note that having
θ = 0 lets us use r and z . Observe that cos 0 = 1 and sin 0 = 0.

g1(r, z) =


 r

0
z


 1 ≤ r ≤ 2

0 ≤ z ≤ 9 − r2

The function that parameterizes the top is:

g2(r, θ) =


 r cos θ

r sin θ
9 − r2


 1 ≤ r ≤ 2

0 ≤ θ ≤ π/2

The domain is the annular region between the circles in the first
quadrant.
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Now we will parameterize the outside wall. In this case, r is constant. What determines the upper bound
on z ?

g3(θ, z) =


 2 cos θ

2 sin θ
z


 0 ≤ θ ≤ π/2

0 ≤ z ≤ 5
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Define the functions in Maple:
> g1:=(r,z)->[r,0,z]

g1 := (r, z) → [r, 0, z]
> g2:=(r,t)->[r*cos(t),r*sin(t),9-rˆ2]

g2 := (r, t) → [r cos(t), r sin(t), 9 − r2]
> g3:=(t,z)->[2*cos(t),2*sin(t),z]

g3 := (t, z) → [2 cos(t), 2 sin(t), z]
And to plot the surfaces:
> A1:=plot3d(g1(r,z),r=1..2, z=0..9-rˆ2,color=cyan):
> A2:=plot3d(g2(r,t),r=1..2, t=0..Pi/2,color=magenta):
> A3:=plot3d(g3(t,z), t=0..Pi/2, z=0..5,color=red):
> display(A1,A2,A3);

Before we do this next example we remind you of the spherical coordinate system.


x ρ sinϕ cos θ

y ρ sinϕ sin θ
z ρ cosϕ




Example 4 The solid in the first octant lies between the spheres
x2 + y2 + z2 = 1 and x2 + y2 + z2 = 9, (x ≥ 0, y ≥ 0, z ≥ 0) and
below the cone z =

√
3(x2 + y2). We are going to parameterize the

four surfaces that we can see in the figure, beginning with the small
spherical surface to the lower left where ρ = 1. The cone on the top
is produced by letting ϕ = π/6.

h1(θ, ϕ) =


 sinϕ cos θ

sinϕ sin θ
cosϕ


 0 ≤ θ ≤ π/2

π/6 ≤ ϕ ≤ π/2

By adjusting ρ to be 3 we have the outside spherical surface.

h2(θ, ϕ) =


 3 sinϕ cos θ

3 sinϕ sin θ
3 cosϕ


 0 ≤ θ ≤ π/2

π/6 ≤ ϕ ≤ π/2

The side closest to the viewer occurs when θ = 0, cos 0 = 1, sin 0 = 0.
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h3(ρ, ϕ) =


 ρ sinϕ

0
ρ cosϕ


 1 ≤ ρ ≤ 3

π/6 ≤ ϕ ≤ π/2

The top comes from the cone, ϕ = π/6, where sin(π/6) = 1/2
and cos(π/6) =

√
3/2.

h4(ρ, θ) =


 ρ(1/2) cos θ

ρ(1/2) sin θ
ρ(

√
3/2)


 1 ≤ ρ ≤ 3π

0 ≤ θ ≤ π/2

We show h4 in an unsimplified form to make the process more transparent. Now we translate this into
Maple and show how to plot the surfaces.
> h1:=(t,phi)->[sin(phi)*cos(t),sin(phi)*sin(t),cos(phi)];

h1 := (t, φ) → [sin(φ) cos(t), sin(φ) sin(t), cos(φ)]
> h2:=(t,phi)->[3*sin(phi)*cos(t),3*sin(phi)*sin(t),3*cos(phi)];

h2 := (t, φ) → [3 sin(φ) cos(t), 3 sin(φ) sin(t), 3 cos(φ)]
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> h3:=(rho,phi)->[rho*sin(phi),0,rho*cos(phi)];
h3 := (ρ, φ) → [ρ sin(φ), 0, ρ cos(φ)]

> h4:=(rho,t)->[rho*(1/2)*cos(t),rho*(1/2)*sin(t),rho*(sqrt(3)/2)];

h4 := (ρ, t) → [ρ
(

1
2

)
cos(t), ρ

(
1
2

)
sin(t), ρ

(√
3

2

)
]

Now for the plot which appears above:
> B1:=plot3d(h1(t,phi),t=0..Pi/2,phi=Pi/6..Pi/2,color=blue):
> B2:=plot3d(h2(t,phi),t=0..Pi/2,phi=Pi/6..Pi/2,color=red):
> B3:=plot3d(h3(rho,phi),rho=1..3,phi=Pi/6..Pi/2,color=cyan):
> B4:=plot3d(h4(rho,t),rho=1..3,t=0..Pi/2,color=magenta):
> display(B1,B2,B3,B4);

C3M4 Problems Use Maple to parameterize and to plot using plot3d:
1. S , the cylinder x2 + y2 = 3, for 0 ≤ z ≤ 2 and its top
2. T , the triangular plate 3x + y + 4z = 12 in the first octant (0 ≤ x, 0 ≤ y, 0 ≤ z )
3. U , the portion of the sphere of radius 3 that lies above the cone x2 + y2 = z2 , and in the half-plane

y ≥ 0. And include the cone with y ≥ 0 and z ≥ 0.
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